Understanding Complex Networks Using Graph Spectrum
نویسندگان
چکیده
Complex networks are becoming indispensable parts of our lives. The Internet, wireless (cellular) networks, online social networks, and transportation networks are examples of some well-known complex networks around us. These networks generate an immense range of big data: weblogs, social media, the Internet traffic, which have increasingly drawn attentions from the computer science research community to explore and investigate the fundamental properties of, and improve the user experiences on, these complex networks. This work focuses on understanding complex networks based on the graph spectrum, namely, developing and applying spectral graph theories and models for understanding and employing versatile and oblivious network information – asymmetrical characteristics of the wireless transmission channels, multiplex social relations, e.g., trust and distrust relations, etc – in solving various application problems, such as estimating transmission cost in wireless networks, Internet traffic engineering, and social influence analysis in social networks.
منابع مشابه
Spectrum Assignment in Cognitive Radio Networks Using Fuzzy Logic Empowered Ants
The prevalent communications networks suffer from lack of spectrum and spectrum inefficiency. This has motivated researchers to develop cognitive radio (CR) as a smart and dynamic radio access promised solution. A major challenge to this new technology is how to make fair assignment of available spectrum to unlicensed users, particularly for smart grids communication. This paper introduces an i...
متن کاملSpectral Analysis and Dynamical Behavior of Complex Networks
In this paper, we employ spectral graph theory as a tool for analyzing the Internet topology. We show its importance in understanding dynamical behavior of complex networks. We also provide an overview of various approaches dealing with synchronization in complex networks.
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملAnalysis of the enzyme network involved in cattle milk production using graph theory
Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle...
متن کاملNeural network function, density or geometry?
Recent studies have been using graph theoretical approaches to model complex networks (such as social, infrastructural or biological networks), and how their hardwired circuitry relates to their dynamic evolution in time. Understanding how configuration reflects on the coupled behavior in a system of dynamic nodes can be of great importance, for example in the context of how the brain connectom...
متن کامل